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Abstract

In recent years disciplines such as psychology, cognitive
sciences and philosophy of mind have proposed alterna-
tive models to the classical view of conceptualization,
that is traditionally centered on the role of definitions.
Classical logic and classical set theory are no longer
considered adequate tools for the formalization of the
conceptual structures introduced by such new propos-
als. In this paper, starting from a recent work by Michael
Freund, we present a logical formalization for a theory
of concepts where notions such as stereotypical proper-
ties and context play a central role.

Introduction
In the study of concepts and conceptualization, the so-called
classical view depicts concepts as represented in our mind
by means of definitions: a list of properties that are individ-
ually necessary and jointly sufficient in order to recognize
an item as an occurrence of a certain concept. This iden-
tification between concepts and definitions results in sharp
categorizations (every item either falls or does not fall in a
definitive way under a given concept), that can be formalized
by means of classical set-theory and classical mathematical
logic.
Since the 70’s, especially thanks to the work of Eleanor
Rosch (see e.g. (Rosch 1975)), a series of drawbacks of the
classical view have become evident, since most concepts,
under certain conditions, can reveal fuzzy boundaries and
borderline cases. The experimental investigation over hu-
man conceptualization has revealed a subtle structure, where
notions as ‘typical properties’ and ‘degree of membership’
play a fundamental role; hence, there has been a flourishing
of new theories about the structure of concepts and their role
in cognitive processes. The notion of stereotype acquires a
key-role in the formation of concepts and in commonsense
reasoning, where by ‘stereotype’ or ‘prototype’ we refer to
an individual that satisfies some key properties, typically
(but not necessarily) true of the members of a certain class.
Hence, a concept is connected to a set of properties that can
be ascribed to its most typical instantiations, not necessar-
ily to every item that falls under such a concept. For exam-
ple, the stereotype of a natural category such as ‘bird’ can
be thought as a set of properties describing an individual
that we consider to be particularly representative of the very

concept of a bird, as: little dimensions, covered with feath-
ers, with wings, with a beak, flying, nesting on trees, laying
eggs, singing. . . . In this case, the properties that we asso-
ciate to the concept of bird are appropriate for identifying a
robin or some other little tree-bird, but not all such properties
are necessary for deciding if an individual is a bird (think of
atypical birds as penguins, ostriches, etc.).
The role of the stereotypes in the formation and use of con-
cepts (see (Murphy 2002) for an overview) has forced to
abandon the classical definitional characterization of cate-
gories to the benefit of more elaborated characterizations,
such that the members of a category can be arranged with
respect to their ‘resemblance’ to the category’s typical mem-
bers: if an item satisfies or not a typical property of a con-
cept, it falls, respectively, more or less under such a concept.
More recently, new approaches to the study of concepts have
taken into consideration also the role that each concept plays
in a more comprehensive picture, taking into account also
our knowledge about the world in general, and the way we
interact with it in different situations (see again (Murphy
2002) for an overview). From such a point of view, a con-
cept has no fixed connotation, but its meaning depends on
the particular situation at hand, that can force the agent to
focus his attention on particular properties, ignoring others.
Some new theories embracing such a perspective about con-
cepts are Barsalou’s ad-hoc categorization (Barsalou 1983)
or Sperber and Wilson’s Relevance Theory (Sperber and
Wilson 1995); according to such proposals, the conceptual
schemes that an agent uses in its interactions cannot be iden-
tified without considering also the particular situations at
hand, since every kind of interaction focuses the agent’s at-
tention on particular kinds of properties and information.
For example, consider a piano. You can have different kinds
of interactions with it: if you are a musician, you see the
piano principally as a musical instrument, and your main
concern will be about the quality of its sound; otherwise,
if you have to carry it up to the fourth floor, the piano will
be considered primarily as a heavy object, and your atten-
tion will be focused on properties such as its weight and its
fragility. In every situation the representation we have of an
item varies: different contexts (i.e. different goals, different
kinds of interactions. . . ) result into an alteration of the im-
portance our cognition ascribes to the properties taking part
in the characterization of an item.



In what follows we propose a semantical formalization of
concepts that takes under consideration also the role of
stereotypes and contexts. We will assume an hypothesis
about conceptualization that, in particular, Barsalou has in-
ferred from its experiments: independently of the different
contexts, people have a very general, complete and stable
(and often socially shared) amount of information associated
to every concept. The contextual variation in the meaning
of a concept depends on which portion of such background
knowledge the agent considers contextually relevant, retriev-
ing it from his memory in the particular situation at hand.
As Barsalou, we will distinguish between categories, classes
defined on the base of the stable background information
stored in the agent’s memory, and concepts, the contextual
representation of a category, defined only by the information
the agent takes under consideration in the particular case.
For example, we will have a relatively stable category ‘pi-
ano’, defined by a huge amount of information about pianos
stored in our memory, and different, ‘on the fly’, concepts
‘piano’, depending on the situations at hand, for example
whether we are going to play the piano or to carry it up the
stairs, as in the above example.

“[. . . ] on one hand, we may have a stable concept BIRD in
our minds which gives access to a range of information about
the category of birds (e.g. they have feather, they sing, they
fly, etc.). On the other hand, only a certain subset of these
features of birds may be accessible to us at one particular
point. When this selective processing results in a representa-
tion which denotes a subset (or superset) of the general cat-
egory of birds we can say that a new concept has been con-
structed ad hoc. In this way, a single encoded concept, say
BIRD, can be used as a starting point to construct a wide
array of ad hoc concepts, say BIRD*, BIRD**, BIRD***,
on different occasions, each one with a different denotation.”
[(Vega Moreno 2007), p.21]

The starting point for the present proposal is in a recent work
by Michael Freund, (Freund 2008), that introduces a quali-
tative formalization of vague concepts in a preferential se-
mantic framework. We shall modify it in order to obtain a
more ‘flexible’ framework, appropriate for the formalization
of the role of contexts in conceptualization. From (Freund
2008) we take two basic ideas:
• The main elements for the definition of a concept C: a

set of properties ∆C that members of C typically, but not
necessarily, satisfy, an associated salience order ≥Q de-
fined over ∆C , and the complexity level function l defined
over the concepts.

• The idea of the composition of concepts, presented in the
last section.

Regarding the two above points, we have avoided some the-
oretical simplifications made by Freund (for example that
every concept has a defined, fixed extension, or that at the
base of our conceptual system are sharp, not-vague elemen-
tary concepts) and we have changed slightly the definition
of the preorder defining a complex concept and the one of
the construction of a composed concept.
The work is structured as follows: in the next section we
shall present a semantical model for dealing with categories,
i.e. our general background information about classes. Then,
we shall introduce a formal notion of context and the contex-
tual characterization of concepts. In the succeeding sections

we shall see how our model deals with problems typically
faced by the theory of concepts, such as similarity, exten-
sion, and composition of concepts.

Default information: categories.
In this paragraph we present a possible way to deal with
stereotypical, vague concepts. This structure shall represent
the general, context-independent and exhaustive information
the agent has about a particular domain, that is, we want this
structure to represent the categories the agent has in mind,
and in what follows we shall refer to it as the default knowl-
edge of the agent.
Our structure is composed of a set of individuals and a set
of categories. The set of individuals is represented by a fi-
nite domain D of individuals (D = {a1, . . . , an}), and let
P be a finite set of categories (P = {P1, . . . , Pm}). We
want our model to be appropriate for the expression of vague
concepts, with no sharp boundaries. Hence, we do not asso-
ciate to a concept P any definite extension; instead, we de-
fine how P applies to our individuals, the elements of the
domain D, by means of a preference relation (or typicality
relation) �P . Preference relations are binary relations typ-
ically used in semantics for the formalization of defeasible
reasoning (see e.g. (Kraus, Lehmann, and Magidor 1990)),
in order to indicate which situations an agent considers more
or less typical; here we apply them to our domain of items
D, in order to indicate which individuals an agent considers
as more or less typical in the domain w.r.t. a given category.
A preference relation �P is a preorder (i.e. a transitive, re-
flexive relation) over D (�P : D × D), where ‘a �P b’ has
to be read as ‘a is at least as typical as b w.r.t. concept P ’.
We shall indicate by ≺P and ≡P , respectively, the strict and
the equivalence parts of the relation �P (a ≺P b if and only
if a �P b and b 6�P a, while a ≡P b if and only if a �P b
and b �P a).
We assume that each agent has a set of elementary cate-
gories, that is, a set of categories whose definition does not
refer to any other category (admittedly, this is a strong the-
oretical assumption, compatible, for example, with an em-
piricist characterization of cognition). Hence, we partition
the set of categories P into a set PE , the set of elementary
categories, and a set PC , the set of complex categories. Ev-
ery category P in PE , not depending for its characterization
on any other category, is directly associated to a preorder
�P over D.
Instead, a complex category Q in PC is defined referring
to other categories: we associate to it a pair 〈∆Q;≥Q〉.
∆Q = {P1, . . . , Pm} is a finite set of categories (the pro-
totypical properties associated to the elements of Q), and
≥Q is a salience relation over ∆Q (≥Q: ∆Q ×∆Q), where
‘R ≥Q S’ has to be interpreted as saying ‘The property R
is at least as salient as the property S with respect to the
characterization of the category Q’ .
≥Q is a modular order, i.e. it satisfies, besides reflexivity and
transitivity, the property of completeness:

• Completeness: for every R ∈ ∆Q and S ∈ ∆Q, R ≥Q S
or S ≥Q R.



As in (Freund 2008), we impose that every category is built
from ‘simpler’ ones, that is, every concept P has a complex-
ity level l(P ) defined in the following way:

• If P ∈ PE , then l(P ) = 0.

• If P ∈ PC , then l(P ) = max{l(Q)|Q ∈ ∆P }+ 1.

That is, we impose that in order for a category system (The
set of categories P) to be acceptable, the complexity level
function l must be definable. We can define the typicality or-
der �Q associated to the concept Q in a lexicographic way.

Definition 1 (Typicality Relation). Given a pair 〈∆Q;≥Q〉,
associated to a complex category Q, we define a relation�Q

over D as
a �Q b if and only if, for any category R ∈ ∆Q,

• a �R b; or
• there is a category S ∈ ∆Q, with S >Q R, such that
a ≺S b.

A lexicographic composition of the preorders is the most
natural method to obtain a preferential relation ordering the
elements of D w.r.t. a category Q in such a way that the re-
spective salience of the properties listed in ∆Q is respected.
It is easy to see that, assumed that ∆Q is a finite set, the
preference relation associated to a complex category Q is a
preorder.

Proposition 1. For every category Q ∈ P , the relation �Q

is a preorder.

Proof. Check items 1. and 5. in (Andréka, Ryan, and
Schobbens 2002), Theorem 4.1.

Now we have a set of objects D and a set of properties (cat-
egories) P such that every P in P is defined by means of
a (reflexive and transitive) preference relation �P over D,
relation that expresses the typicality of the objects in D with
respect to a concept P . We can identify the set of the most
typical elements of the category P as

min�P
(D) = {a ∈ D | for every b ∈ D, b 6≺P a}

The set min�P
(D) contains the most typical samples, the

prototypes, of the category P . The structure just defined rep-
resents the background information to which the agent can
draw the pieces of information that are relevant in a particu-
lar context.
Example 2. Suppose we are treating the complex cate-
gory bird, that is defined by a set of categories ∆bird =
{animal, covered with feathers, has wings, has beak,
flies}. Such properties are arranged by a salience relation ≥bird

into three layers (here and in what follows the items grouped be-
tween vertical bars are equivalent w.r.t. the considered order):

covered with feathers
animal >bird has wings >bird flies

has beak

Let D = {a, b, c, d, e} be our domain, where a is a robin, b a
penguin, c is a cat, d is a shoe, and e is a bat.
Each of the categories in ∆bird order the domain in the following
way:

a
b ≺animal d
c
e

;
a c
b ≺feathers d

e
;

a c
b ≺wings d
e

;

a c
b ≺beak d

e
;

a b
e ≺flies c

d

Using the lexicographic procedure, we obtain the following order-
ing �bird over D:

a ≺bird b ≺bird e ≺bird c ≺bird d

That is, the robin a is a more typical exemplar of the category bird
than the penguin b, which is more typical than the bat e; then there
is the cat c, and, finally, the shoe d, that is not even an animal.

Remark 1. In case we want to assume that every elemen-
tary category is characterized by modular orders, instead of
simple preorders, also modularity is preserved through a lex-
icographic construction of the typicality orders.

Proposition 3. If the typicality orders associated to the ele-
mentary categories in PE are modular, then, for every cate-
gory Q ∈ P , the relation �Q is modular.

To prove the statement is sufficient to prove that also com-
pleteness is preserved in the lexicographic construction (see
(Andréka, Ryan, and Schobbens 2002), theorem 4.1, item
6). So, what follows is applicable also if we want to con-
sider only modular typicality orders.

Contextual information: concepts.
The preferential model presented above represents agent’s
default information about categories. An agent, equipped
with such background knowledge, refers to it in order to re-
trieve relevant information to interact with the environment
and other agents in specific situations.
Above, every complex category Q is defined by means
of a set ∆Q of simpler concepts and by a salience order
≥Q. Such information models the general comprehension
an agent has of a category, and in every particular situation
the agent retrieves and uses only portions of such default in-
formation, depending on the properties the agent considers
as the most salient ones at the moment.
Hence, we define a context as the information the agent con-
siders relevant in the particular situation at hand, that is,
what the agent focuses his attention on. A context C shall
be defined by means of three constituents:

C = 〈DC,PC,≥C〉

where:
• DC ⊆ D. The set DC represents the set of individuals we are

considering at the moment.

• PC ⊆ P . The set PC represents the properties that we take into
consideration in the context C, our contextual concepts.
As in the case of categories, we assume the set PC to be parti-
tioned into the set of elementary concepts, PC

E , and a set of com-
plex concepts, PC

C . The set of elementary concepts represents



those concepts that the agent treats as given, not questionable, in
the particular situation. We do not assume a perfect correspon-
dence between elementary concepts and elementary categories
(i.e. PC

E = PE ∩ PC). Obviously, a concept corresponding to
an elementary category cannot be considered a complex con-
cept in a contextual situation, since its nature is ‘essentially’ an
elementary one, but we can assume a complex category to be
treated as an elementary concept in a given context (P ∈ PC ,
but P ∈ PC

E): in such a case the agent is simply assuming such
categories as primitive, firmly acquired notions, that cannot be
put under discussion in the situation at hand. Hence, we impose
that (PC ∩ PE) ⊆ PC

E , and consequently PC
C ⊆ PC .

• ≥C is a salience relation over the set of properties PC (≥C:
PC×PC). As the salience order that we associate to every com-
plex category, ≥C is a modular order, and it indicates on which
properties the attention of an agent is focused in the particular
situation. that is, ‘P ≥C Q’ is interpreted as ‘In the context C,
the concept P is at least as salient as the concept Q’.

Hence, a context tells us what the agent is taking under con-
sideration in a particular situation: which items and which
properties.
For every context C, we associate to every concept P in
PC a preferential order �C

P , appropriate for the context. If
P ∈ PC

E , then the agent uses the concept P in an ‘uncritical’
way, and consequently it associates to it its default prefer-
ence order �P , defined by its background knowledge; we
simply restrict �P to the contextual domain, that is

• �C
P =�P ∩(DC ×DC)

Otherwise, if P ∈ PC
C , we associate to every complex con-

cept Q a pair 〈∆C
Q;≥C

Q〉, where

• ∆C
Q = ∆Q ∩ PC. That is, of all the properties associated to the

category Q, we associate to the concept Q in the context C just
those properties taken under consideration in C (if ∆Q ∩ PC =
∅, Q must be treated as as an elementary concept).

• The salience relation associated to a concept Q in C, the relation
≥C

Q, is generated from the contextual relation ≥C, restricting it
to the members of the set ∆C

Q (i.e. ≥C
Q = ≥C ∩ (∆C

Q ×∆C
Q)).

That is

R ≥C
Q S iff R ∈ ∆C

Q, S ∈ ∆C
Q, and R ≥C S.

Hence, we have a contextual model where we can associate
to every concept P in PC a typicality order �C

P with the
same procedures adopted for the background knowledge.
Definition 2 (Contextual typicality relation). Given a con-
text C = 〈DC,PC,≥C〉, the typicality relation �C

P associ-
ated to a concept P ∈ PC is defined in the following way:
• If P ∈ PC

E , then the agent associates to the concept P the
contextual restriction of its default preference order �P

(�C
P =�P ∩(DC ×DC)).

• If P ∈ PC
C , then the agent associates to the concept P

a preference relation �C
P obtained in the usual lexico-

graphic way, that is, given the pair 〈∆C
P ;≥C

P 〉, a �C
P b

if and only if, for any concept R ∈ ∆C
P ,

– a �C
R b; or

– there is a concept S ∈ ∆C
P , with S >C

P R, such that
a ≺C

S b.

As in the case of categories, in every context C, for every
concept P ∈ PC, we define a preference relation �C

P that
is a preorder (or a modular order, if such are the elementary
concepts). An individual is a typical sample of a concept
P in a context C iff it is in the set min�C

P
(DC), where the

function min�C
P

is defined as the function min�P
in the

preceding section.
Example 4. Assume two contexts, C′ and C′′. In C′ we reason
about biological species in a naive way, while in C′′ we treat them
in a more sophisticated way. The two contexts have the same do-
main: DC′

= DC′′
= {t, s, d, o}, where t is a tuna, s is a shark,

d is a dolphin, and o is an octopus. In our background knowledge,
we associate to the category fish various kinds of information, but
the context makes us consider only a subset of such information.
Assume that in C′ the concept fish is defined by means
of the following C′-elementary concepts ∆C′

fish =
{lives in water, is covered with scales, has fins},
with lives in water more salient than the other two. These
concepts are associated with the following preference relations
over the domain:
≡water

s
t
d
o

;
s

t ≺scales d
o

;
s
t ≺fins o
d

Hence, our naive concept fish corresponds to the ordering �C′
fish:

d

t ≺C′
fish ≺C′

fish o
s

Moving to the context C′′, the concept fish is defined by
means of the following C′′-elementary concepts ∆C′′

fish =
{lives in water, vertebrate, has the gills, lays eggs}, where
the salience relation is

water >C′′
fish gills >C′′

fish lays eggs
vertebrate

The preference orders associated with these concepts are

≡water

s
t
d
o

;
s
t ≺vertebrate o
d

; t ≺gills o
s d

;

t ≺eggs s ≺eggs d
o

From this preferential relations, we obtain the following ordering
representing the concept fish in C′′:

t ≺C′′
fish s ≺C′′

fish d ≺C′′
fish o

As can be seen, focusing only on certain properties in the
contextual characterization of a concept, we obtain different
preference relations ordering the domain: in the more naive
context C′ the dolphin and the shark are in the same relative
position, are ‘equally fishy’, while in a more technical con-
text, the shark results strictly more typical as a fish than a
dolphin.



Now we have a basic structure for modeling the contextual
variation of the meaning of a category. In the following para-
graphs we shall see some of the problems typically associ-
ated to the study of concepts, and how they could be treated
within our approach.

Similarity
Similarity between items, and between items and concepts,
is an important ingredient of cognition. We can define a sim-
ilarity measure between items, taking under consideration
which interests the agent has in a particular context. First we
shall define a notion of similarity between items with respect
to a specific concept, and then a measure of relevance for the
items relative to a given context.
Assume a context C = 〈DC,PC,≥C〉, and consider a con-
cept P ∈ PC with its associated preference relation�C

P , and
two items a and b in DC. We can define a measure of dis-
tance between a and b with respect to the concept P in the
context C. If a ≺C

P b or b ≺C
P a, then there are paths between

a and b, that is, finite sequences of items, 〈a, c1, . . . , cn, b〉,
with n ≥ 0, such that a ≺C

P c1 ≺C
P . . . ≺C

P cn ≺C
P b or

b ≺C
P cn ≺C

P . . . ≺C
P c1 ≺C

P a.
Let pCP be a function that, given two items a and b such that
either a ≺C

P b or b ≺C
P a, gives back the longest path(s)

between them.
Using the function pCP , we can define a distance function dCP
between two objects a and b in the context C. Given two
objects a and b, we can have three cases.

• a ≺C
P b or b ≺C

P a;

• a ≡C
P b;

• a 6�C
P b and b 6�C

P a.

We consider two items a and b to be comparable just if we
have the first two cases, that is if a �C

P b or b �C
P a. If

a 6�C
P b and b 6�C

P a, then we consider the two items not
to be comparable with respect to P in C (obviously, if we
are dealing with modular orders two individuals are always
comparable). If there is comparability, then we can define a
measure of distance.
Definition 3 (Distance function dCP ). Given two items a and
b, we define a partial distance-function dCP between a and b
in the following way:
• If a ≺C

P b or b ≺C
P a, then dCP (a, b) = (|pCP (a, b)| −

1) (where |pCP (a, b)| is the cardinality of the path(s) in
pCP (a, b)).

• If a ≡C
P b, then dCP (a, b) = 0.

• if a 6�C
P b and b 6�C

P a, then dCP (a, b) has no value (the
two items are not comparable with respect to P ).

With the function dCP we can define a similarity measure be-
tween items with respect to a concept P in a context C.
In order to define it, we need also a function lC(P ), that,
given a concept P , gives back the maximum distance be-
tween two elements of the domain with respect to the paths
in the relation ≺C

P .

lC(P ) = max{dCP (a, b)|a ∈ DC, b ∈ DC}

Now we can define a measure of similarity between items.
Definition 4 (Similarity between items). Given two items a
and b, we define a partial function sCP of similarity between
a and b in the following way:

• If dCP (a, b) has a value, then sCP (a, b) =
lC(P )−dC

P (a,b)
lC(P )

.

• If dCP (a, b) has no value, then sCP (a, b) is not defined too.
If dCP (a, b) is defined, then sCP (a, b) has a value between 0
and 1, where 1 says that a and b are maximally similar with
respect to P in C, and we have such a value if and only
if a ≡C

P b, while we have the value 0 in case a and b are
maximally distant with respect to P in C.
Defined a similarity measure between items, we can define
also a similarity measure between an item and a concept in a
context. We identify the distance between an item and a con-
cept with the distance between that item and a prototypical
exemplar of that concept.
Definition 5 (Similarity between an item and a concept).
Given an item a and a concept P , we define a function sC of
similarity between a and P in the following way:

sC(a, P ) = max{sCP (a, b)|b ∈ min�C
P

(DC)}

That is, given the set min�C
P

(DC), representing the most
typical exemplars of the concept P in the context C, we take
under consideration the maximal similarity between a and
an element of min�C

P
(DC).

Note that sC(a, P ) is a total function, with a defined value
for every pair a, P , while the similarity between items is
represented by a partial function, since two items may not
be comparable (if our typicality relations are preorders, and
not modular orders).
Example 5. Refer to Example 4. We can see how the similarity
value of an item with respect to a concept can vary from context
to context. In the context C′, describing a naive characterization of
fishes, we have that a shark s and a dolphin d are equally distant
from, and consequently equally similar to, a tuna t, that represents
a typical instance of fish:

sC
′

fish(s, t) = sC
′

fish(d, t) =
lC

′
(fish)− dC

′
fish(d, t)

lC′(fish)
=

2− 1

2
=

1

2

Given that the only element of min�C′
fish

(DC′
) is t, we have

sC
′
(s, fish) = sC

′
(d, fish) =

1

2

Otherwise, in the context C′′, where the concept fish is character-
ized in a slightly more scientific way, we have a different value of
similarity, with the shark s being more similar to a typical fish than
the dolphin d:

sC
′′

(s, fish) = sC
′′

fish(s, t) =
lC

′′
(fish)− dC

′′
fish(s, t)

lC′′(fish)
=

3− 1

3
=

2

3

sC
′′

(d, fish) = sC
′′

fish(d, t) =
lC

′′
(fish)− dC

′′
fish(d, t)

lC′′(fish)
=

3− 2

3
=

1

3



Obviously, we can also define a default similarity measure
between items, defined exactly as above, but at the level of
categories (that is, using the domain D and the default typi-
cality relations �P ).
Eventually, using the preferential relation �C generated by
a context C we can think of a distance function dC between
items with respect to the context, in order to obtain, with
the same procedure used for similarity, a relevance function
rC that tells us how relevant an item is in a given context.
Given a context C = 〈DC,PC,≥C〉, the associated relevance
relation �C can be defined simply treating C as a concept
defined by 〈PC,≥C〉 on DC.
The steps are the same as for the similarity measure. Given
the relevance relation �C over DC, first we can define the
related function pC that, given two items a and b, gives back
the longest path(s) between a and b with respect to the rela-
tion ≺C, and then a distance function dC between items.
From the function dC we can define a partial function sC

representing contextual similarity between items, expressing
how much two items can be considered similar in a context,
independently from any particular concept. The definitions
are identical to those of pCP , dCP , and sCP , just consider the
preorder ≺C instead of ≺C

P .
Since the relation �C tells us which items are more or less
relevant in a given context, we can think of min�C(DC) as
the set of the most relevant items in the context C. We can
measure the relevance of an item a in C considering how
similar a is to the set min�C(DC).

Definition 6 (Relevance of an item in a context). Given an
item a, we define a relevance function rC in the following
way:

rC(a) = max{sC(a, b)|b ∈ min�C(DC)}

That is, given the set min�C(DC), representing the most
relevant items in the context C, we take under considera-
tion the maximal similarity between a and an element of
min�C(DC).

Example 6. Consider an agent whose goal is to plant a nail in
the wall, and that needs an appropriate tool. Such a need could lead
to the creation of a context C, where the set of properties could be
PC = {robust, heavy, can be grasped}, three equally salient
properties an item should have in order to be an appropriate tool for
planting a nail. Let our contextual domain be DC = {h, p, s, c, r},
where h is a hammer, p is a pillow, s is a shoe, c a clog, and r a
slipper.
We start with the following preference relations:

h ≺robust s ≺robust p
c r
h ≺heavy s ≺heavy p
c r

c
h ≺grasp s ≺grasp p

r

Such orders define, in the usual lexicographic way, the following
contextual preference relation:

h ≺C c ≺C s ≺C r ≺C p

Now, assume that it is summertime and the agent wants to
take a walk on the seaside, and he needs to choose appropri-
ate footwear. Suppose the set of relevant properties shall be
PC′

= {wearable, comfortable, socially accepted}, with
wearable >C′

socially accepted >C′
comfortable. These

three concepts are associated with the following preference orders:

c p
s ≺wearable

r h
;

r ≺comfortable s ≺comfortable p
c h

;

s ≺socially accepted r ≺socially accepted p
c h

Hence, the new preference order becomes:

p

c ≺C′
s ≺C′

r ≺C′

h

That is, talking about footwear for the beach, the clogs are the most
relevant objects of our domain.
We can see how the relevance value of an object can vary in a
radical way from one context to another. In context C we have that
the hammer h is in min�C

(DC). So we can calculate that h has
maximum relevance in C, that is

rC(h) = 1

Otherwise, moving to C′, we have

rC
′
(h) = sC

′
(h, c) =

lC
′
− dC

′
(h, c)

lC′ =
3− 3

3
= 0

That is, the hammer h is not relevant at all, if we are reasoning
about footwear.

Extension of concepts
Until now we have treated concepts as typicality orders over
a domain. In this way we have been able to define a series
of relational properties of the items, such as how typical an
item is with respect to a concept, how similar two items are,
or how relevant an item is with respect to a context. How-
ever, we have not dealt with the issue of defining the ‘bor-
ders’ of the concepts, their extensions, that is, which items
we consider as falling under a concept and which we do not.
In order to model inferential procedures we need our agents
to be able to decide if an item falls under a given concept or
not. Notwithstanding, we want to be able to treat the exten-
sion of a concept as a contextual matter, appropriate also for
the treatment of vagueness; hence, if we ascribe to a concept
a fixed extension, as in (Freund 2008), we would lose the
contextual nature of concepts we wanted to formalize.
In the classical definitional characterization, we associate to
every concept P a set of ‘essential properties’ such that only
the items satisfying all of them can be considered as an in-
stantiation of P . Here we proceed in an analogous way, but
allowing the set of properties to vary from one context to
another.
Again, we start considering first the agent’s background
knowledge, his categories, and then the contextual charac-
terization: given a concept, we will define its default exten-
sion w.r.t. categories, then we will specify how to modify it



according to the particular context. Given a category P , let
Ext(P ) indicate the set of items falling under P (its exten-
sion).
First of all, recall that we have a set of elementary categories
PE , each of them defined simply by a typicality relation�P .
Hence, the extension of an elementary concept P cannot be
defined by referring to some list of ‘essential properties’ an
item should satisfy to fall under P . Now we present a pos-
sible formalization of the extension of elementary concepts,
but such a proposal wants just to point out that in our model
it is possible to treat a contextual variation of extensions, but
more subtle methods to deal with such an issue are surely
possible.
To define the default extension of an elementary concept we
associate a value between 0 and 1 to it: such a value rep-
resents the similarity threshold (stP ) an item has to exceed
in order to be considered as falling under P . For example,
if we associate to the property red a similarity threshold
stred = 0.8, we define the extension of the category red
over the domain D as

a ∈ Ext(red) if and only if s(a, red) > 0.8

where s(a, red) is the similarity measure between a and the
most typical exemplars of the category red.
For the complex categories in PC , since they are defined by
means of other categories, we assume that there are proper-
ties the agent considers essential for the definition of a com-
plex category. Hence, we associate to every category Q a
set of properties ΓQ, with ΓQ ⊆ ∆Q. The satisfaction of
the properties in ΓQ is treated as a necessary and sufficient
condition in order to consider an item a as falling under Q.

a ∈ Ext(Q) if and only if a ∈ Ext(P ) for every P ∈ ΓQ

Intuitively, the properties in ΓQ should be the most salient
properties in ∆Q, but formally it is not necessary to impose
such a constraint.
Hence, starting from the elementary categories and moving
up to higher complexity levels, we can define the default
extension Ext(P ) over the domain D for every category
P ∈ P .
Using the default extensions, we can define a procedure to
define the extension of a concept P with respect to a context
C (ExtC(P )). Recall that every context C is associated to
a domain DC and a set of concepts PC, that is partitioned
in a set of contextually elementary concepts, PC

E , and a set
of contextually complex concepts, PC

C . When we look at a
concept P ∈ PC, we can identify three possible cases.

• P ∈ PC
E and P ∈ PE , that is, the concept P is not only

contextually elementary, but is ‘genuinely’ elementary (it
represents an elementary category). In such a case we
have stated that P is characterized by a preference rela-
tion �C

P =�P ∩(DC×DC). Then we apply the similarity
threshold stP to the new relation �C

P . This allows us to
‘modulate’ the extension of an elementary concept con-
sidering the domain we are working in.

If P ∈ PC
E and P ∈ PE , then a ∈ ExtC(P ) if and only

if sC(a, P ) > stP .

For instance, take into consideration the concept red,
and suppose that it is associated to a similarity threshold
stred = 0.8. Assume the item a is an orange item. If we
are working in a context with a domain composed of few
‘reddish’ items and many green or blue items, the item a
will be contextually very similar to the most typical in-
stances of red, and, consequently, it will be likely that the
item shall overcome the similarity threshold of 0.8. On the
contrary, if we are working in a domain composed only of
‘reddish’ objects, the similarity measure of a with respect
to the concept red will diminish its value, since there will
be many more shadings of red between a and prototypical
examples of red. So, it will be more difficult for a to reach
the threshold and be considered as a red object. That is, if
we are considering many objects that are very similar to
the typical instances of an elementary concept, then our
capacity of discrimination becomes more subtle.

• P ∈ PC
E and P ∈ PC , that is, the concept P is contextu-

ally treated as an elementary concept, but the correspond-
ing category has a complex nature. We have previously
established that if we treat in a particular context a com-
plex category as an elementary concept, we use it with its
default characterization, that is we refer to its character-
ization at the level of categories. Hence it applies to the
items in the context exactly as it applies to the same items
in the default model. Consequently, not only the prefer-
ence relation associated to P is defined as the restriction
of the default preference relation in the domain of the con-
text (�C

P =�P ∩(DC ×DC)), as defined in Section 3, but
also its extension:

If P ∈ PC
E and P ∈ PC , then

ExtC(P ) = Ext(P ) ∩ DC.

• P ∈ PC
C , that is, the concept P is contextually complex

(and consequently it corresponds also to a complex cate-
gory). In such a case, we have a set of essential properties
ΓP associated to the category P . So, we define ExtC(P )
considering a set of essential properties ΓC

P , obtained sim-
ply restricting ΓP to the properties considered in the con-
text, that is, ΓC

P = ΓP ∩ PC.

If P ∈ PC
C , then a ∈ ExtC(P ) if and only if

a ∈ ExtC(Q) for every Q ∈ ΓC
Q.

Example 7. Consider Example 4. Assume that, as a default,
we have the following properties defining the membership to the
category fish: Γfish = {lives in water, is vertebrate, has
fins, has gills}, with Ext(lives in water) = {t, s, d, o},
Ext(is vertebrate) = {t, s, d}, Ext( has fins) = {t, s, d, },
and Ext( has gills) = {t, s}.
In the first context C′, we have ΓC′

fish = {lives in water,
has fins}, with lives in water and has fins treated as elemen-
tary concepts. Consequently, in such a naive context, we obtain
that both the shark s and the dolphin d fall under the concept fish,
since both of them live in water and have fins. On the contrary,
if we move to the slightly more elaborate context C′′, we have
ΓC′′
fish = {lives in water, is vertebrate, has gills} (again,

each of them treated as elementary concepts), and consequently
now the shark s falls under the concept fish, but not the dolphin d,
that does not have gills.



As we have just seen, it is possible to modulate the extension
of every concept with respect to a particular context, defin-
ing the new extensions from the elementary concepts up to
more complex ones.
Since there is the possibility of such contextual variations
of extensions, the same two concepts can be compatible or
not depending on the context, that is, in some context there
could be at least an item falling under both of them, while in
other contexts their extensions are disjoint.

Definition 7 (Compatibility). Two concepts P and Q are
compatible in C if and only if ExtC(P ) ∩ ExtC(Q) 6= ∅.

Composition of concepts.
A typical problem in the formalization of concepts is to ac-
count for their composition. By ‘composed concept’ we re-
fer to a new concept obtained by specifying a main concept
by means of a secondary one. For example, take concepts as
not-flying birds or toy-horses, where the concepts bird and
toy are specified by means of the concepts not-flying and
horse, respectively.
Refining the proposal in (Freund 2008), we can use contexts
in order to combine concepts. To express the concept ob-
tained by combining two concepts P and Q, we write P ∗Q,
where Q is the main property and P works as a specification.
Following Freund, in order for a composition to be defin-
able, we need the property P to be applicable to some ele-
ments of the principal concept Q, that is, the two concepts
have to be compatible (Ext(P ) ∩ Ext(Q) 6= ∅).
Such a request can possibly be not satisfied at the level of
categories. For example, presumably an agent does not have
an intersection between the extensions of the categories toy
and horse (Ext(toy) ∩ Ext(horse) = ∅). Notwithstand-
ing, toy-horse can be considered a commonsense concept,
indicating a puppet shaped as a horse; hence, a combination
as horse ∗ toy can be conceived only at a contextual level,
in every context C such that the concepts toy and horse are
compatible (Ext(toy) ∩ Ext(horse) 6= ∅). So, the combi-
nation of concepts represents, in general, a contextual proce-
dure, that we can apply only in those contexts in which the
concepts we are focusing on are compatible.
Assumed that in a context C two concepts P and Q are com-
patible, i.e. ExtC(P )∩ExtC(Q) 6= ∅, we have to define how
to combine such concepts in the composed concept P ∗ Q.
Regarding the extension, simply state that ExtC(P ∗ Q) =
ExtC(P )∩ExtC(Q). The problem is in the definition of the
typicality order �C

P∗Q. First of all, the sets of the essential
and typical properties of P ∗Q are obtained simply unifying
the respective sets of P and Q, that is, ∆C

P∗Q = ∆C
P ∪∆C

Q

and ΓC
P∗Q = ΓC

P ∪ ΓC
Q.

If P is an elementary concept in the context C, just impose,
trivially, that ∆C

P = ΓC
P = {P}. Given that a ∈ ExtC(P ∗

Q) if and only if a ∈ ExtC(R) for every R ∈ ΓC
P∗Q, it

is immediate to see that, imposing ΓC
P∗Q = ΓC

P ∪ ΓC
Q, we

obtain exactly ExtC(P ∗Q) = ExtC(P ) ∩ ExtC(Q).
We have to define the salience order ≥C

P∗Q over ∆C
P∗Q. In

defining such an order, we want the properties connected to
concept Q to be in general more relevant than the properties

connected to the concept P , since Q is the principal concept,
but we want also the properties in ΓC

P∗Q to be more promi-
nent than the properties in the set ∆C

P∗Q − ΓC
P∗Q. Hence we

define the salience order ≥C
P∗Q in the following way.

Definition 8 (Salience relation of a composed concept.).
R ≥C

P∗Q S if and only if one of the following holds:

• R ∈ ΓC
P∗Q and S ∈ ΓC

P∗Q

• R ∈ ΓC
P∗Q and S ∈ ∆C

P∗Q − ΓC
P∗Q

• R ∈ ∆C
Q − ΓC

P∗Q, S ∈ ∆C
Q − ΓC

P∗Q and R ≥C
Q S

• R ∈ ∆C
Q − ΓC

P∗Q and S ∈ ∆C
P − (∆C

Q ∪ ΓC
P∗Q)

• R ∈ ∆C
P − (∆C

Q ∪ ΓC
P∗Q), S ∈ ∆C

P − (∆C
Q ∪

ΓC
P∗Q) and R ≥C

P S

It is easy to show that ≥C
P∗Q is a modular order. Being the

proof easy, we have omitted it here for space reasons.
Proposition 8. ≥C

P∗Q is a modular order.
Defined the concept P ∗ Q by means of the pair
〈∆C

P∗Q,≥C
P∗Q〉, we can define a typicality order �C

P∗Q in
the usual, lexicographic way.
Example 9. Assume that the categories toy and horse are defined
by the sets of properties

Γtoy ={inanimate object, can be handled by kids,

kids enjoy playing with it}

Γhorse ={animal, equine, has four legs, has hoofs, has

mane, has elongated snout, taller than a person}
In the default model, there is no item that can fall under both of
the concepts. The situation could change if we consider contextual
characterizations. For example, assume we are in a toy-shop. Our
concept toy is associated to its default essential properties, which
represent also the contextual typical properties (∆C

toy = ΓC
toy =

Γtoy). Instead, the context allows us to have just the following
properties for horse:

∆C
horse = ΓC

horse ={has four legs, has hoofs, has
mane, has elongated snout}

The domain is represented by the set DC = {h, g, t}, where h is
a piece of plastic shaped as a horse, g is a piece of plastic shaped
as a giraffe, and t is a piece of plastic shaped as a truck. We have
ΓC
horse∗toy = Γtoy ∪ Γhorse and ∆C

horse∗toy = ΓC
horse∗toy . The

typicality orders associated to each property are:

≡C
inanimate

h
g
t

;

≡C
handled

h
g
t

;

≡C
enjoy

h
g
t

;

h ≺C
fourlegs t

g
;

h ≺C
hoofs t

g
; h ≺C

mane g ≺C
mane t ; h ≺C

snout t
g

The resulting typicality relation is:

h ≺C
horse∗toy g ≺C

horse∗toy c



Conclusions and further work.
Concerning the logical characterization of contexts, we
are aware of two main kinds of approaches: on one hand
the works of Giunchiglia and al. (Ghidini and Giunchiglia
2001), or the work of Attardi and Simi (Attardi and Simi
1995), and on the other hand works as McCarthy’s (Mc-
Carthy 1993). The former approaches describe a notion of
context that is quite different from ours, since their ‘con-
texts’ refer to the different ‘points of view’ of the agents,
i.e. the different pieces of information the agent have access
to in a given situation (a context is usually a partial descrip-
tion of the world), with a particular attention towards the
interaction of different points of view, focusing particularly
on multi-agent systems, but with an underlying monotonic
form of reasoning. On the other hand our model deals with
the way an agent ‘modulates’ its own conceptual organiza-
tion w.r.t. the particular situation at hand. McCarthy’s work
is more general, addressing foundational issues, surely to be
taken under consideration. However, we are not aware of
any work proposing a formalization of context in order to
deal with the notion of vagueness.
The present model could work well as a semantical base to
formalize more than one aspect of uncertain reasoning:

• Fuzzy reasoning. We could point to the formalization of a
qualitative characterization of fuzzy reasoning. Moreover,
it is known that context plays a big role in the vagueness
that often our concepts show, but by now it has not been
considered.

• Non-monotonic preferential reasoning. The semantical
tool we have used (preferential orders) are fundamental
in the non-monotonic reasoning field. The present model
has been created with a non-monotonic consequence rela-
tion in mind.

• Similarity-based reasoning. An option to be considered,
since we can implement similarity measures in our model.

Moreover, the notion of context, besides being theoretically
interesting per se, could be attractive from the point of view
of multi-agent systems and goal-oriented reasoning.
Obviously, this is just a first step, since most of the work
still needs to be done. We need to define the behaviour of
classical propositional connectives (¬,∧,∨); regarding such
a point, we agree with Freund [(Freund 2008), p.5] that the
definition of the behaviour of the classical operators should
be secondary to the definition of a solid framework charac-
terizing the behaviour of concepts, since, from a cognitive
point of view, it is not obvious that the negation of a con-
cept or the disjunction and conjunction of concepts should
be again considered concepts. Most important, we are work-
ing on the definition of a consequence relation (and, pos-
sibly, on its characterization also from the inferential point
of view), in order to implement the forms of reasoning ad-
dressed above (Freund has proposed in (Freund 2009) a first
attempt in this direction w.r.t. his own semantic models).
The challenge is interesting from more than one point of
view, since the potential implementation of more than one
form of uncertain reasoning (primarily, (qualitative) fuzzy
and non-monotonic) poses not only technical problems, but

also theoretical ones about their distinction (already widely
investigated) and their possible integration.
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